

Calibration Software Needs For CAL BFEM

J. Eric Grove Naval Research Lab

Mods to recon

GLAST Software 16-19 Jan 2001

□ What changes are needed to BF CAL recon?

- Energy measurement was poorer than it should have been because
 - 1. The charge-injection calibration didn't cover bottom and top of each range well enough.
 - Muon peak set the gain scale, but it wasn't well covered by chg-inj.
 - 2. My quadratic -quadratic gain model wasn't good enough.
 - Some channels just had a different shape.
 - 3. People used calibrations for time periods for which they weren't valid.
 - Gain calib was not valid for January proton runs, but we used it anyway.
 - Led to false impression that CAL wasn't calibrated.
- So we need new energy scale fcns in BF recon.
 - New chg calibration covers full range.
 - I ran pre-ship, will continue to run pre flight.
 - New gain model (piecewise linear).
 - AI: create new ADC_to_fC fcn (Chekhtman)
 - AI: create new fC_to_MeV tables (Grove, Chekhtman)

Naval Research Lab Washington DC

Operational needs

GLAST Software 16-19 Jan 2001

- □ Ground calibration of CAL
 - Test and checkout plan, instrument operations
 - During BF payload integration and pre-flight checkout
 - Periodic overnight muon runs
 - To set absolute energy scale
 - Periodic electronic calibrations
 - To set gain scale, linearity
 - One big, long muon run
 - To map all crystals
- ☐ See my details for CAL in Eduardo's session

Mods to recon

GLAST Software 16-19 Jan 2001

□ What changes are needed to BF CAL recon?

- BF will have random mix of photons and particles
 - All subsystems need to work on photon-hadron/nucleus discrimination
 - CAL recon will otherwise merrily try profile fitting on C nuclei!
- BF gives opportunity to put recon in context of Richard's "From Space to Photons" flow chart.
- BF GCRs are useful for developing CAL calibration algorithms.
 - Need photon-nucleus discrimination.
 - Use ACD ULD for first pass.
 - Need TKR recon for trajectories.
 - Need good ground calib of CAL.

Balloon flight GCRs

5

GLAST Software 16-19 Jan 2001

☐ GCR rates for Palestine balloon flight

- Require passage through uppermost full Si layer and bottom of Csl
- Used CREME96 for 35km above Palestine in 2001, from H to Ni
- See http://gamma.nrl.navy.mil/glast/tech_memos/cremeballoon.pdf

Assuming 8 hrs at float

~4000 CNO

~900 Ne, Mg, and Si

~250 Fe

to play with.

Species	Total rate (per hr)	Non-fragmenting rate (per hr)
С	220	63
N	58	15
О	220	55
Ne	35	8
Mg	46	10
Si	35	7
Fe	29	4

Naval Research Lab Washington DC

Scope of Task

GLAST Software 16-19 Jan 2001

- ☐ Also Ground s/w, but beyond scope of this review
 - CAL ground support equipment (CalGSE)

- Command generation & control (in use, complete)

Command state verification (prototype for balloon flight?)

- Health & Safety Monitoring (prototype for balloon flight?)

Data logging (in use, complete)

- CAL simulator

CAL bench-checkout

Low-level analysis, "recon" (in use, extensive suite)

☐ [Balloon flight is an opportunity to put recon in context of flight data flow, Richard's "From Space to Photons."]

Calorimeter Calibration

GLAST Software 16-19 Jan 2001

☐ Functional requirements (top level)

- Electronic calibration: eCalib shall generate pedestal and integral linearity model for each gain range for each PI N diode.
 - Required accuracy is TBD; goal is 3%.
 - Data source is Charge-Injection Calibration Mode.
- Absolute light yield: GCRCalib shall calculate the absolute light yield at the center of each log for each PI N diode.
 - Required accuracy is TBD; goal is 3%.
 - Data source is GCR Calibration Mode.
- Light asymmetry model: GCRCalib shall produce maps of light asymmetry (i.e. light collection efficiency as a fcn of longitudinal position) of each log end and the sum of ends for each log.
 - Required accuracy is 10%; goal is 1%.
 - Data source is GCR Calibration Mode.

Calibration Parameter Database

GLAST Software 16-19 Jan 2001

- ☐ The various calibration processes produce a number of parameters describing the response of the CsI logs.
 - All are time-dependent (TBR).
 - Time scale is likely to be ~ weeks to months (TBR).
- □ Calibration Parameter Database is a service of Software Central.

Pedestals

- Accumulated on board
 - Telemetered: pedestal, pedestal width, diagnostic histogram
 - Optional diagnostic mode telemeters full CAL data set, i.e. not zero-suppressed.
 - 2 bytes x 2 parameters x 4 ranges x 2 ends x 1536 logs = 48 kB

2. Differential linearity correction

- Make the CDB smooth.
 - Worth thinking about some more. Consider 1 byte per ADC bin per range.
 - 1 byte x 4096 channels x 4 ranges x 2 ends x 1536 logs = 50 MB

Calibration Parameter Database

GLAST Software 16-19 Jan 2001

- 3. Integral linearity correction (ADC to fC)
 - Electronic calibration
 - Internal charge-injection circuit; used during in-flight diagnostic mode
 - 4 bytes x 10 parameters x 4 ranges x 2 ends x 1536 logs = 480 kB
 - GCR calibration
 - Might uncover additional non-linearities. Might not; thus these might not be used.
 - 4 bytes x 5 parameters x 4 ranges x 2 ends x 1536 logs = 240 kB
- 4. Gain (optical conversion efficiency: fC to MeV[center of log])
 - Accounts for light collection: electrons at preamp per MeV deposited
 - Calculated from GCR Calibration data. Updates ground calibration.
 - 4 bytes x 4 ranges x 2 ends x 1536 logs = 48 kB
- Light attenuation model (MeV[center] to MeV[position])
 - Accounts for variation of light collection along each log.
 - Calculated from GCR Calibration data. Updates ground calibration.
 - Small and large PI Ns have same light attenuation, so each log has 3 models:
 - Individual ends
 - 4 bytes x 5 parameters x 2 ends x 1536 logs = 60 kB
 - Sum of ends
 - 4 bytes x 5 parameters x 1536 logs = 30 kB

